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ABSTRACT 
 

According to the world health organization, pneumonia was the cause for 14% of all deaths of children under 5 years old. A 

computer-aided diagnosis (CADx) system can help the radiologist in the detection of pneumonia in chest radiographs by 

serving as a second opinion. The typical CADx is based on transfer learning which is done by transferring the learning of 

feature extraction from one task with plenty of available data to a related task with a scarcity of data. This approach has 

two limitations which are first, blocking the transferred model from extracting the features that are singular to the new 

dataset as well as the inability to reduce the complexity of the original model. To address these drawbacks, we proposed a 

convolutional neural network (CNN) model with low complexity and three paths for feature extraction. The proposed model 

extracts three different types of features and concatenates them into one feature that provides a good representation for the 

classes. The proposed model was evaluated on a publicly available dataset. The results showed outperformance by the 

proposed model compared to the transfer learning models with recall 0.912±0.039, precision 0.942±0.029, F-beta score 0.93, 

and Cohen’s kappa score 0.740±0.008. 
 

 
 

 
 

 

 

 

1. INTRODUCTION 

Pneumonia illness is a lung infection caused by microbes such as bacteria or viruses. The pneumonia 

infection creates inflammation in the lung which results in breathing difficulty and sometimes death [1]. In 

2019, a new type of pneumonia caused by the SARS-CoV-2 virus and which is called Covid-19 has spread 

throughout the world and turned into a pandemic [2]. At the early stages of the pandemic, the etiology was 

unknown which made it dangerous to people without medical profession as well as to the health workers alike. The 

spread of covid-19 has paralyzed the medical systems in most of the developed countries, due to its novelty and 

lack of medical procedures to tackle it, and the infection of health workers [3]. 

A computer-aided diagnosis system (CADx) is the utilization of the output of algorithms implemented 

on a computing device to assist radiologists in diagnosing an illness. The CADx output is used as a second 

opinion that complements that of the radiologist and not as a replacement [4]. The availability of a CADx 

system can help in reducing the contact time between the patients and the radiologist which reduces 
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the probability of health workers getting infections. Moreover, the CADx can help reduce the uncertainty 

when making diagnosis decisions by the radiologist as well as in medical education. 

The research of convolutional neural network (CNN) architecture led to state-of-the-art models in 

multi-class classification of generic images. The benchmark was the classifying of the ImageNet database 

[4]. However, the deep neural network model requires an enormous amount of data and computational power 

to train such a model. Nevertheless, the main characteristic of the medical images datasets is that they are 

limited in size compared to ImageNet; Which led to the use of these state -of-the-art models as a pre-trained 

feature extractor [5]. Researchers have used the transfer learning models to classify X-ray images to identify 

COVID-19 infection [6]–[12] or pneumonia in general [5], [13]–[15], Cardiomegaly [16], osteoarthritis [17], 

Breast cancer [18], skin cancer [19], [20], tuberculosis detection [21], and disease-free chest [22]. Popular state-

of-the-art models such as NASNet [23], ResNet101/152 [24], InceptionResNetV2 [25], and Xception [26] have 

been used as transfer learning models [12], [13], [18], [27] based on the hypothesis that the ImageNet features 

can be generalized. However, Kornblith et al. [28] find that the ImageNet features extractors do not generate 

well-discriminating features for the classification of a fine-grained dataset. 

In this paper, we propose a CADx system for binary classification of chest X-ray images into two 

classes: Pneumonia and Normal. The proposed model contains a residual connection, two paths of convolutional 

layers, and multiple filters of different sizes which allow the model to extract rich discriminating features. 

The organization of the paper is : Section 2 describes the dataset used to train and evaluate the proposed technique. 

Section 3 describes the proposed model. Section 4 presents the performance evaluation, followed by the conclusion 

in Section 5. 

 

 

2. MATERIAL AND METHOD 

2.1. Chest X-ray dataset 

The dataset used in this research contains 5856 validated chest X-ray images depicting pneumonia 

and normal cases which were collected by Kermany et al. [5] and publicly shared. These images are grouped 

into two groups which are the training- and the validation group. Table 1 shows the distribution of the images 

in this database and Figure 1 shows samples from this database. 

 

 

Table 1. Number of images for each class in the dataset 

Class 
Subset 

Training Validation 
Normal 1349 234 

Pneumonia 3883 390 

Total 5232 624 

 

Figure 1. Sample images from the chest x-ray dataset. (the images on the first row represent normal lungs. 

The images on the second row represent infected lungs) 
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The scarcity of medical images or the scarcity of images belonging to a specific class in the dataset 

may affect the training process enormously by biasing the model’s weight toward the class with the largest 

data as shown in Table 1, which results in skewed classification. Hence, a cost-sensitive learning approach is 

implemented in this research to deal with this problem. The cost-sensitive learning approach assigns a high 

cost for misclassification of the minority class while the majority class has less misclassification cost, hence, 

adjust the models’ weights in a way that pays more attention to the minority class than to the majority 

class [29]. This approach didn’t discard any existing images from the dataset as well as didn’t generate any 

unreal data that didn’t represent the actual pictorial information. The weights are calculated depending on the number 

of images for each class in the training set as in (1). 
 

𝑤 = 
1 

× 
𝑁𝑎 

  

(1) 

𝑐 𝑁𝑐 𝑘 

where 𝑤𝑐 is the weight for class 𝑐, 𝑁𝑐 is the number of images in class 𝑐, 𝑁𝑎 the total number of images in 

the dataset, and 𝑘 is the number of the classes. 

 

2.2. The Proposed CNN model 

The proposed CNN model as shown in Figure 2, extracts three different types of features which are 

later concatenated into one rich feature with satisfactory classes representation. These features are extracted 

using three paths named A, B, C. In path A, the fine features are extracted as there is no max-pooling layer to perform 

down-sampling. In path B several max-pooling operations will be applied to the input of this path in sequence; In 

total, a sharp feature will be extracted. Moreover, path C extracts basic features which is the output from a 

single convolutional layer. In this model, there are four convolution layers in path A and, three in path B, and 

one at the beginning. In addition, a skip connection (path C) has been added to the proposed model to minimize 

the gradient vanishing impact. There are seven types of layers in the proposed model architecture and the details of 

these layers are explained in the following: 

a. The scaling layer is used to scale the pixel values of the input image in the range [-1 to 1]. After 

rescaling the input, a dropout rate of 0.3 is applied to expose the model to all the features in the image 

and prevent it from considering noise as a feature. 

b. The convolutional layer is used to apply a spatial convolutional operation on the input image with 

several filters which result in generating multiple feature maps. Different sizes of filters are used to 

capture most of the features in the original image independently from their size. A non -linear activation 

function is applied to the output of the convolutional operation to introduce non-linearity to capture 

non-linear features. In this architecture, different activation functions are used, such as Tanh, Elu, Swish, 

Relu, and Selu [30], [31]. 

c. The batch Normalization layer is used to normalize the convolutional layers outcome to make the feature 

maps have unity variance and zero mean. The batch normalization layer can s tabilize the learning process 

and reach convergence faster [32]. The batch normalization enables also reduce the initialization effect on the 

model weights. 

d. The Max-Pooling layer is used to downsample the image and keep the sharp features only. Three max- pooling 

operations with a size of 2×2 and stride of 2×2 are used in path B. 

e. The global Average Pooling layer is used to create one feature map for each class by averaging the 

corresponding feature maps. 

f. The concatenation layer combines the final feature map from the global average pooling in paths A, B, 

and C. The concatenated features will represent a singular large feature that discriminates pneumonia 

from the normal class. 

g. The Fully Connected layer is used to classify the concatenated features into pneumonia and normal 

classes depending on the threshold of the activation function. Moreover, there is a dropout rate of 0.3 is 

applied to the fully connected layer. The dropout introduces sparsity to the activation of the hidden 

neurons, i.e., sparse representation of the data and preventing the neural network from overfitting to the training 

data. There is no image augmentation layer in the model as it’s tested in this research that it’s negatively affected 

the performance of the models. Moreover, the use of a combination of image augmentation techniques is 

previously reported to increase the overfitting in very limited datasets [33]. 

 

 

3. RESULTS AND DISCUSSION 

The metrics used in the experimental analysis are divided into metrics evaluating the performance of 

the model such as recall, precision, f1-score, Kappa statistics, and heat map and metrics used to evaluate the 

complexity of the model such as the total number of parameters, model size, and the testing time. The 

training and testing of the models were conducted on windows 10 using NVIDIA GeForce® GTX 1660 Ti 



 

806                                                           JNAO Vol. 14, Issue. 2, : 2023 

 

GPU, intel core i7–10750 2.60 GHz CPU, and 16GB of installed ram. Due to the random weight initialization 

in the artificial neural network, the final result usually differs each time the model is trained. Hence, we 

trained and tested each of the transfer-learning CNN models as well as the proposed model five times and the 

resulting average is calculated. The number of training epochs is 6, the batch size is 8, and the images are down-

sampled to 160 × 160 before being feed into the models. 

When designing the model, we explored a wide range of combinations of hyper-parameters against 

the evaluation accuracy by using Bayesian optimization with the Gaussian process. The Bayesian optimization 

has been used due to its performance compared to other algorithms such as grid search, random search [34]. The 

tuned hyper-parameters include activation functions, filters numbers and their sizes in each convolutional layer, 

learning rate, optimization function choice. The final hyper-parameters after tunning for the activation functions 

and the number of filters as well as the filter size are shown in Figure 2. Moreover, the learning rate is tuned 

to 0.001 and adaptive moment estimation (Adam) was chosen as the optimization function. The transfer learning 

models are used as a feature extractor while the classifier consists of a global average pooling layer, batch 

normalization, and a fully connected layer with dropout regularization. 

 

 

Figure 2. The proposed model 

 

 

3.1. Recall, precision, and F-beta score 

In the ideal situation, the input data when fed into a trained classification model, the output is the 

actual class of the input. In this scenario, the prediction of X-ray image of pneumonia infected class is called 

true positive (TP) while the prediction for a normal case is called the true negative (TN). However, in the 

real-case scenarios, this outcome isn’t guaranteed for several reasons such as noisy data or weak handling of 

the features by the model, and this can produces a false positive (FP) and false negative (FN). The FN, which 

is a pneumonia case classified as normal, has a severe impact on the patient's health because that it will result 

in preventing or delaying the treatment. On the other side, FP, is a normal case classified as pneumonia, 

raises the medical cost and workforce. The relation between the TP and FP is called the precision and can be 

calculated using (2), high precision means low FP. 
 

Precision = 
𝑇𝑃 

 

𝑇𝑃+𝐹𝑃 
(2) 

while the relation between the TP and FN is called the recall which can be calculated by (3), high recall 

means low FN. 
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Recall = 

 

𝑇𝑃 
 

𝑇𝑃+𝐹𝑁 

 

(3) 

The precision and recall can be used to measure the performance of the model when either the cost 

of FP or FN is critical consequently. In the case of diagnosis of an illness, the higher the recall is the better as 

the consequences are more damaging to the patient. Practically, it’s hard to get a model that has both high precision 

and recall at the same time. The F-beta score combines the precision and recall in a weighted harmonic mean 

as shown in (4). 
 

f − Beta = (1 + β2). 
Precision ×Recall 

(β2×Precision )+Recall 
(4) 

 

The weight is chosen as β = 1 when both the precision and the recall are important. However, if we 

want to favor precision over the recall, then the β < 1 and otherwise β > 1. As aforementioned, the recall 

should be more important than the precision for the pneumonia class. Table 2 shows the performance of the proposed 

model along with the transfer learning models. As mentioned earlier, each test is condu cted five times and 

the average is calculated as the final score along with the standard deviation (std). 

A successful model in the case of classifying pneumonia images should have a high recall and 

relatively high precision. From Table 2, we can see that the Resnet101 showed the highest recall score and a 

low precision score for the pneumonia class. Hence, it’s deemed an impractical model. While the proposed 

model has a combination of high scores for both the recall and precision for the pneumonia class. W hich 

translated to a better F-beta score for all the values of 𝛽 compared to the other models. The results highlight 

the importance of training the feature extractor on the fine-grained dataset as the chest X-ray images. The 

proposed model has learned a discerning feature that discriminates normal from infected lungs images which 

didn’t exist in a generic dataset like ImageNet. 

 

 

Table 2. Precision, recall, and F-beta score results 
     f − Beta  

Model Class Precision Recall 𝛽 =0.5 𝛽 = 1 𝛽 = 2 

InceptionResNetV2 
Normal 0.712±0.025 0.864±0.009 0.74 0.78 0.83 

Pneumonia 0.904±0.004 0.79±0.004 0.88 0.84 0.81 

NASNetLarge 
Normal 0.844±0.042 0.784±0.095 0.83 0.81 0.80 

Pneumonia 0.878±0.045 0.908±0.041 0.88 0.89 0.90 

ResNet101V2 
Normal 0.874±0.021 0.702±0.058 0.83 0.78 0.73 

Pneumonia 0.844±0.024 0.938±0.012 0.86 0.89 0.92 

ResNet152V2 
Normal 0.868±0.039 0.804±0.077 0.85 0.83 0.82 

Pneumonia 0.89±0.038 0.924±0.036 0.90 0.91 0.92 

Xception 
Normal 0.838±0.031 0.82±0.036 0.83 0.83 0.82 

Pneumonia 0.894±0.018 0.902±0.025 0.90 0.90 0.90 

Proposed model 
Normal 0.866±0.050 0.902±0.056 0.87 0.88 0.89 

Pneumonia 0.942±0.029 0.912±0.039 0.94 0.93 0.92 

Radiologist 
Normal 0.96 0.91 0.95 0.93 0.92 

Pneumonia 0.95 0.98 0.96 0.96 0.97 

 

 

3.2. Kappa statistics 

Cohen’s kappa statistic (interrater reliability) is a measurement to test the agreement between different 

raters given the same data [35]. Despite using the same data, the used CNN models in this study have different 

feature extraction methods which result in a different classification. Hence, the kappa statistic is used to 

determine the interrater reliability between the radiologist and the CNN models. The kappa statistic can be 

calculated as in (5). The range for the kappa statistic is from -1 to +1. The interpretations of Kappa score are: 

when the score ≤0 then there is no agreement between the raters; when the score is between 0.01 and 0.20 

then there is a slight agreement. If the score is between 0.21 and 0.40, then there is a fair agreement; the score 

between 0.41 and 0.60 shows a moderate agreement. A score between 0.61 and 0.80 means substantial 

agreement; finally, a score between 0.81 to 1.00 means almost perfect agreement. Table 3 shows Cohen’s kappa 

statistic for the CNN models. 
 

𝜅 = 
𝑃𝑟(𝑎)−𝑃𝑟(𝑒) 

 

𝑃𝑟(𝑒) 
(5) 

 



 

808                                                           JNAO Vol. 14, Issue. 2, : 2023 

 

where 𝑃𝑟(𝑎) is the probability of agreement, and 𝑃𝑟(𝑒) is the expected agreement. 
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 Table 3. Kappa statistic  
Model Kappa statistics 

InceptionResNetV2 0.583±0.030 
NASNetLarge 0.648±0.042 

ResNet101V2 0.614±0.029 

ResNet152V2 0.688±0.050 
Xception 0.676±0.033 

Proposed model 0.740±0.008 

 

 

From Table 3, we can see that most of the models have a substantial agreement between the 

radiologist assessment and the models’ predictions. However, the proposed model has the highest kappa score 

with the least standard deviations. The kappa statistic result might enforce the idea that the proposed model 

has learned medical diagnostic features. 

 

3.3. Class activation map (CAM) 

The class activation map (CAM) is a helpful tool to find what features in th e image that has the 

highest impact on the prediction of image class. Hence, the CAM can be used to validate that the model is 

picking the right underlying pattern for each class. If the model didn’t pick the right patterns, the training of 

the model should be revised. However, CAM has a drawback which is the requirement for changing the CNN 

model and dropping the fully connected layers. Selvaraju et al. [36] proposed a generalization to CAM called 

the gradient-weighted class activation map (Grad-CAM). The Grad-CAM didn’t require architecture 

modification as well as it is applicable for a wide range of CNN-models families. The Grad-CAM uses the 

gradient information that feeds into the last convolutional layer of the CNN to visualize the importance of the image’s 

parts for the classification of the class at hand. 

Figures 3 and 4 show the X-rays images and the corresponding Grad-CAM. Note that in the normal 

cases on X-ray images, the lungs appear with a dark shade, whereas the spine appears with white shade; This 

is because the air in the lungs has smaller attenuation compared with bones in the spine. Generally, radiologists 

diagnose pneumonia when there is a loss-of-silhouette sign [37] which is the loss of the heart borders with 

the adjacent lungs segments. It is observed that the normal and pneumonia Grad -CAMs can highlight the medial 

part of the X-ray images, including lungs and part of the spine. However, The pneumonia Grad-CAMs show 

a significant loss-of-silhouette sign in X-ray images. 

 

 

Figure 3. Normal images. first row: chest x-ray images, second row: Corresponding heat map 

 

 

3.4. Model complexity 

A model with a low level of complexity is more suitable to be deployed in real-time CADx as well 

as deployment on devices with low computational capabilities and storage size. The main factor that affects 

the model complexity is the number of model parameters. Model parameters are the variables that are tuned 
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throughout the training of the artificial neural network training to enhance the prediction of the model. The 

higher the number of the parameter the more computations are required in both training and testing. The time required 

for training and testing is the by-product of the number of parameters that the model has. The proposed 

model has a very small size compared to the transfer learning models as can be seen in Table 4. This size 

will also affect the time of testing chest X-ray images, as the number of addition-multiplication operations will 

decrease. The test time in Table 4 is done for a batch of size 32. 

 

 

Figure 4. Pneumonia images. first row: Chest x-ray images, second row: corresponding heat map 

 

 

Table 4. Models’ complexity comparison 
Model Total # of parameters Size (in KB) Time (in Sec) 

InceptionResNetV2 54,344,417 214,377 2.99±0.05 

NASNetLarge 84,936,979 334,750 4.44±0.11 

ResNet101V2 42,636,801 167,619 1.79±0.08 
ResNet152V2 58,341,889 229,467 2.41±0.06 

Xception 20,871,721 81,992 1.19±0.06 

  Proposed model  2,337,057  27,548  0.87±0.03  

 

 

4. CONCLUSION 

In this paper, we proposed a new CNN model which tested on pneumonia binary classification, and 

the results were verified using recall, precision, 𝛽-score, Kappa statistics. The model is more suitable for 

real-time CADx as it has lower complexity compared to transfer learning models. Unlike the transfer learning models 

which rely on generic features, the proposed model was trained to extract a fine-grained feature in the dataset. The 

extracted features gave the proposed model a lead in the test scores as it effectively represents the Pneumonia 

and normal classes. The extracted features are proved to be correct by observing the Grad - CAM that is 

extracted from the advanced convolutional layers in the model. 
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